

ELIZADE UNIVERS!TY, ILARA-MOKIN, ONDO STATE, NIGERIA DEPARTMENT OF AUTOMOTIVE ENGINEERING

SECOND SEMESTER EXAMINATIONS

2018/2019 ACADEMIC SESSION

COURSE:

ATE 536 - Vehicle Design (3 Units)

CLASS:

500 Level, Automotive Engineering

TIME ALLOWED:

3 Hours

INSTRUCTIONS:

Answer questions 1, 2 and any other three

Date: July, 2019

HOD's SIGNATURE

Design information:

ABC Farms specialises in growing and marketing potatoes. The farms recently secured a contract to supply their farm produce to a major distribution located 200 km from the farms. Feasibility studies showed that transportation via road would be the most economic and technical option. The farm products are pre-packaged into units that weigh 500kg each and have cuboid shape with $1.0m \times 0.5m \times 1.0m$ dimensions. Design requirements (State assumptions):

Question 1

Define necessary parameters and analyse the preliminary requirements as stated:

i. Use Evaluation Matrix to choose the best type of vehicle. (Hints: Possible options are left to your discretion.)

...10 marks

- ii. Determine the maximum weight and number of units of farm produce that can be supplied at any one time.

 (Hints: Use payload limit of the vehicle chosen as reference.) ...5 marks
- iii. Give schematic illustration of the vehicle chosen and the farm produce. (*Hints: show load locations, dimensions, etc.*) ...5 marks
- iv. Determine the value and location of the equivalent load of vehicle chosen and load.

...10 marks

v. Determine resultant force on each wheel.

...10 marks

Question 2

Establish the structural rigidity of the vehicle through shear force and bending moment analysis

...15 marks

Question 3

Establish Equations of Motion (EOMs) relating to vibration of rear and front wheels of the vehicle.

...10 marks

Question 4

Specify steering moment ratio (MR), mechanical advantage (MA), and mechanical efficiency ($\eta_{mech.}$).

...10 marks

Question 5

Specify the vehicle braking parameters and calculate braking efficiency of the vehicle.

...10 marks

Question 6

With the aid of schematic illustration, describe the driveline of the vehicle chosen.

...10 marks

Question 7

What will be the effect on vehicle dynamics, with respect to stability, if:

a) Payload limit of chosen vehicle is exceeded.

...5 marks

Page 1 of 3

246

List of equations and additional information:

Steering

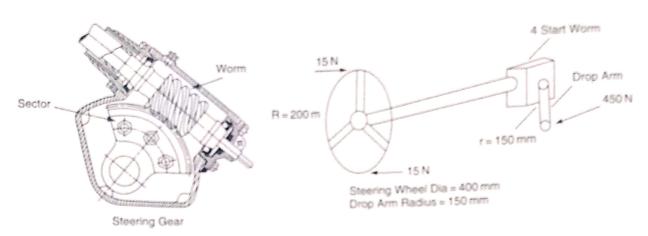
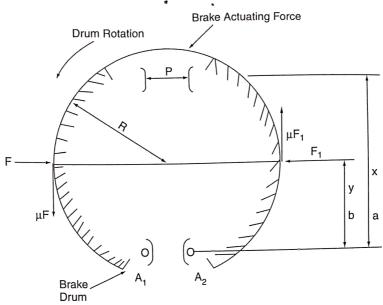


Figure 1: Worm and sector steering gear

$$MR = \frac{distance\ moved\ by\ effort}{distance\ moved\ by\ load} = \frac{2\pi R}{\frac{\alpha}{\beta} \times 2\pi r}$$

$$\eta_{mech.} = \frac{MA}{MR}$$


where.

R =Radius of steering wheel

r =Steering drop arm length

Take: $\alpha = 4$; $\beta = 48$.

ng system

Drum Radius = R Actu

Actuating Force = P

F and F₁ = Normal Force Created by P

 μ F and μ F₁ = Friction Forces

Action of Leading Shoe

Taking Moments about Pivot A1

$$Px = Fy - \mu FR$$

$$F = \frac{Px}{(y - \mu R)}$$

Action of Trailing Shoe

Taking Moments about Pivot A₂

$$Px = F_1 y + \mu F_1 R$$

$$\therefore F_1 = \frac{Px}{(y + \mu R)}$$

The Force F at the Leading Shoe is Greater than F_1 At the Trailing Shoe.

Figure 1: Drum brake

Take: x = 12cm; y = 24cm; R = 15cm; $\mu = 0.4$; P = 2,000,000N.

Hydraulic diameter, d = 50mm

Effective radius of the brake disc, Re = 150mm

Braking torque (two pads) = $2R\mu PA$

Braking efficiency = $\frac{a}{q} \times 100\%$

Take: Maximum braking deceleration, $a = 7ms^{-2}$; Acceleration due to gravity, $g = 9.81ms^{-2}$